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a b s t r a c t

High concentrations of helium will be produced in fusion reactor structural materials due to neutron cap-
ture reactions. The creep-rupture and fracture properties may be severely degraded if helium aggregates
at grain boundaries to a sufficiently high level. To design helium-resistant microstructures requires
detailed knowledge of the transport and fate of helium to sinks. We utilize atomistic methods to study
the fate of helium in the neighborhood of dislocations, grain boundaries and coherent nano-clusters in
a-iron. The binding energies of helium to these defects are strongly correlated with excess atomic vol-
ume. Molecular dynamics and the dimer saddle point search method were employed to study the mobil-
ity of both interstitial helium atoms and helium–vacancy complexes in dislocations and grain boundaries.
The migration energy of interstitial helium in these defects was found to range from about 0.4–0.5 eV.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Reduced activation ferritic/martensitic steels are the leading
candidate first-wall/blanket structural materials for fusion power
systems [1]. In these materials He will be produced at concentra-
tions approaching �1800 appm at end-of-life doses of �170 dpa
[2]. Since He is essentially insoluble in metals and tends to aggre-
gate at internal defects such as vacancy clusters, voids, dislocations,
grain boundaries, lath boundaries and particle–matrix interfaces, it
is essential to develop a detailed picture of He transport and fate in
the complex ferritic steel microstructure. It is well known that at
high-temperatures (P0.5 Tmelting) the creep-rupture properties of
steels will be significantly degraded if He is allowed to preferen-
tially collect at grain boundaries [3]. It is also well known that the
upper operating temperature limit for conventional ferritic steels
is approximately 550 �C due to a rapid fall-off in tensile and creep
strength with increasing temperature [1]. A more economically
attractive fusion power system may be feasible if nanostructured
ferritic alloys (NFA) can be developed to improve creep strength
[1] and to better manage He by creating a high-density of nanopar-
ticles to serve as obstacles to dislocation glide, as well as providing
fine-scale He bubble nucleation sites and preferred locations for
point defect recombination [4].

The work reported here is part of a comprehensive effort to
develop a multi-scale model of He transport and fate in ferritic/
martensitic alloys [5]. The model will be used to predict the perfor-
mance of irradiated conventional alloys and NFA. Fundamental He
effects experiments will be performed to gather key information
to validate the model. Ultimately the validated model will be used
ll rights reserved.

: +1 509 376 0418.
to develop high-performance NFA for fusion. We highlight recent
atomistic results of modeling the binding and migration of He at
extended defects in Fe such as dislocations, grain boundaries
(GB), and particle–matrix interfaces. Our interest here is to identify
generic properties of these microstructural features that control
the binding and migration of He. Consequently we employ a wide
variety of atomic-scale computational tools to investigate the
effects of dislocation character, GB structure, and particle–matrix
elastic property mismatch on the binding and migration of He in
and near these defects.

2. Computational methods

2.1. Interatomic potentials

In principle, ab initio simulations provide the most realistic
approach to computational modeling of atomic-scale phenomena
in crystalline materials. However, being restricted to atom config-
urations that comfortably fit within extremely small volumes and
can be made to have periodic boundary conditions, renders an ab
initio approach unfeasible for our present studies of He interactions
with extended defects such as dislocations, grain boundaries and
particle–matrix interfaces. On the other hand, molecular dynamics
(MD) using interatomic potential functions suffers from a lack of
realistic interatomic interactions, simply because much of the
important physics of the interactions cannot be directly included.
However, because of the large size of models that can be dealt with
relatively efficiently, MD models can easily be applied to situations
that include long-range fields and the essential features of large,
non-symmetric defected regions of the material.

Thus, a set of interatomic potentials for Fe–Fe, Fe–He and He–
He interactions suitable for use in MD simulations is needed for
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Table 1
Physical properties of the Fe–Cu–He Finnis–Sinclair potential and the modified Cu
potential

Property Ackland
et al. Fe

Mendelev
et al. Fe

Ackland
et al. fcc
Cu

Modified
fcc Cu

Ackland
et al.
bcc Cu

Modified
bcc Cu

Lattice
parameter
(nm)

0.28665 0.28553 0.3615 0.3615 0.2961 0.3041

c11 (GPa) 243 243 169 100 290 198
c12 (GPa) 145 145 122 75.4 192 103
c44 (GPa) 116 116 76 35.3 147 66.1
Cohesive

energy
(eV)

4.316 4.122 3.519 3.519 3.496 3.599

Defect formation energies (eV)
Vacancy 1.70 1.71 1.19 1.00 1.32 1.67
Di-vacancy

(1nn)
3.26 – 2.21 1.88 2.42 3.13

Di-vacancy
(2nn)

3.22 – 2.42 2.00 2.55 3.19

Substitutional
He

3.25 – 2.75 2.68 2.54 2.67

Octahedral
interstitial
He

5.25 4.99 – – – –

Tetrahedral
interstitial
He

5.34 5.13 – – – –

He1V2

complex
(1nn)

4.49 – 3.60 3.41 3.42 3.97

He1V2

complex
(2nn)

4.76 – 3.98 3.69 3.73 4.15
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these studies. In recent years a number of MD simulations of radi-
ation damage and defect interactions in a-Fe, as well as studies of
the properties of He in Fe, have been performed using the same set
of interatomic potentials [6–10]. This set consists of the Finnis–
Sinclair type potential for Fe–Fe due to Ackland et al. [11], the
Wilson and Johnson potential for Fe–He [12], and the He–He
potential used by Beck [13]. Thus, for consistency in comparing
our present simulations of He in grain boundaries and dislocations
to the body of earlier work, we have used this set of potentials in
the present simulations.

The Ackland et al. Fe–Fe potential, has a functional form with
parameters that can be fitted to the values of a set of material
properties (usually for the perfect crystal and often to some defect
properties, such as vacancy and interstitial formation energies)
determined numerically by experimental measurements or ab ini-
tio calculations. However, there is no guarantee that this potential
or any other existing interatomic potentials for Fe can adequately
represent all non-equilibrium or non-symmetric atom configura-
tions of interest.

More recently, Mendelev et al. [14] developed several similar
interatomic potentials for the Fe–Fe interactions that were fitted
to specific properties of both crystalline and liquid Fe based on
measured and ab initio-calculated properties. These potentials are
on average in better agreement with those properties than the Ack-
land potential and other potentials for Fe. Of this set, the Mendelev
potential #2 appears to be the best for computation of defect prop-
erties of interest to the present study. In addition to performing the
calculations for all the configurations addressed in this paper using
the Ackland potential, we have also calculated the formation ener-
gies of octahedral and tetrahedral interstitial He in Fe using the
Mendelev #2 Fe–Fe potential for comparison. The formation ener-
gies of He in the octahedral and tetrahedral interstitial configura-
tions are 5.25 and 5.34 eV, respectively, using the Ackland
potential, while the corresponding values using the Mendelev po-
tential are 4.99 and 5.13 eV. The ab initio values [15,16] are 4.57–
4.60 and 4.37–4.39 eV. The results with the Mendelev potential
are somewhat closer numerically to the ab initio values, but they
also do not predict that the tetrahedral configuration has the lower
formation energy.

Recently Seletskaia et al. [17] developed a new Fe–He potential
that more accurately reproduces the ab initio interstitial and sub-
stitutional He formation energies in Fe. This Fe–He potential cor-
rectly gives tetrahedral interstitial He a lower formation energy
than octahedral interstitial He, but the energy difference between
these two configurations is only 0.04 eV compared to ab initio val-
ues of 0.18–0.23 eV [15,16]. The Wilson Fe–He potential predicts a
small energy difference between the octahedral and tetrahedral
interstitial sites (0.09 eV), but incorrectly gives the lowest forma-
tion energy for the octahedral site. The consequences of these dif-
ferences are likely not significant given our primary interest here,
which is the behavior of He in microstructural defects that deviate
substantially from a perfect Fe lattice. Nevertheless, in the future,
we plan to test the sensitivity of our results to the choice of inter-
atomic potential by repeating selected simulations using the more
recently developed Fe–Fe and Fe–He potentials.

An objective of our work is to explore the effect of particle elas-
tic properties on binding of He–vacancy clusters to particle–matrix
interfaces. Coherent, nanometer-scale particles with elastic con-
stants both stiffer and softer than Fe were examined in this study.
We selected the Cu–Cu and Fe–Cu interatomic potentials devel-
oped by Ackland et al. [11] to model coherent bcc particles pos-
sessing elastic properties stiffer than Fe. To explore the situation
when particle elastic properties are softer than Fe we modified
the above potentials so that the lattice parameter and cohesive en-
ergy for modified Cu were nearly the same as for real Cu, but the
elastic constants were significantly decreased to c11 = 100 GPa,
c12 = 75.4 GPa and c44 = 35.3 GPa. We basically followed the same
procedure described by Ackland et al. [11] to construct the modi-
fied Cu–Cu and Fe–Cu potentials. Important physical properties
for the suite of Fe–Cu–He potentials employed in this work are
given in Table 1.

2.2. Excess volume of extended defects

The results of our simulations show that the availability of
excess volume within and near lattice defects strongly influences
the disposition of He in crystalline materials. The atomic volume
is defined as the locus of all points in space surrounding an atom
that are closer to that atom than to any other atom. ‘Excess
volume’ at a location in an imperfect lattice can be defined in
terms of the deviation of the atomic volume at that location from
the atomic volume at a similar location in a perfect lattice. Thus,
by this definition, there is no excess volume in a perfect lattice.
We define two manifestations of excess volume that are closely
related: ‘excess atomic volume’ centered on lattice sites and
‘excess interstitial volume’, which can be considered as a measure
of the same overall excess volume, but defined relative to the
specified ‘center’ of an interstitial region rather than being
centered on an atom. Excess interstitial volume is a particularly
useful concept when dealing with interstitial He atoms within
grain boundaries and in the strain fields around dislocations
(where tensile strains create regions of excess interstitial volume
and compressive strains create regions of deficient interstitial
volume – or ‘negative excess volume’).

In the present work, both excess atomic volumes and excess
interstitial volumes were determined using the Voronoi volume
construction [18]. The Voronoi volume can be obtained by deter-
mining the volume of the polyhedron formed by the planes that
are perpendicular bisectors of the lines connecting the central
atom to all other atoms (typically 2–3 neighbor shells). To deter-
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mine interstitial volumes, the center of the interstitial site was
determined from the positions of surrounding atoms, and then
the interstitial volume associated with that position was deter-
mined using the Voronoi construction. To determine excess
volumes, the atomic and interstitial volumes in the dislocated crystal
were compared to the atomic and interstitial volumes, respec-
tively, in the perfect crystal.

2.3. Dimer method

The dimer method has been described in detail elsewhere [19],
so only the central principles are provided here. The dimer method
is a numerical algorithm that finds saddle points in a potential sur-
face of arbitrarily high dimension. Basins of the potential surface
correspond to metastable states of the system, and the saddle
points are the lowest energy-transition points between these
states. Knowledge of these saddle points enables the determination
of rates of reactions involving transitions from one energy basin to
another. Algorithms in the dimer method are different from the
widely used nudged-elastic band method [20] for finding transi-
tion state saddle points. The nudged-elastic band requires the ini-
tial and final states of a transition to obtain the energy barriers,
while the dimer method only needs the initial state. The dimer
method involves working with two atomic images of the system
that are displaced from each other by a small distance. To search
for a saddle point involves two operations, namely rotating and
translating the dimer. Each time, it is necessary to rotate the dimer
towards the minimum energy, which is equivalent to finding the
lowest curvature mode at the midpoint of two images, as shown
in Fig. 1(a). Then, the dimer translates along this line and moves
up the potential surface, as illustrated in Fig. 1(b). In the initial cal-
culation, the dimer is minimized along a line defined by the initial
force, and it is then moved a small distance along the line to calcu-
late the derivative of the effective force. Newton’s method is used
to determine the position with zero effective force along the line,
and the dimer is then moved to that point. A similar approach is
a

Fig. 1. Schematic diagrams showing (a) the rotation of the dimer towards the minimum e
the dimer translating along this line and moving up the potential energy surface.
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Fig. 2. Schematic drawings of the computational cells and orientations of the models of
applied for the rotation algorithm. After each translation, the dimer
is reoriented and moved along a direction conjugate to the previ-
ous line minimization. By repeating these steps, the dimer con-
verges towards a saddle point, if it exists.

2.4. Dislocations

Molecular statics relaxations of interstitial He–dislocation con-
figurations were performed to determine the formation energies of
interstitial He defects in and around edge and screw dislocations.
Some MD simulations were also performed to study the short-term
intermediate-range behavior of interstitial He in the dislocation
core region at low temperatures. The dimer method was used to
determine transition state energies and configurations of He
migration paths for interstitial He atoms in and around the
dislocations.

Models of the (a/2)½111�½�1 �12� edge dislocation and the
(a/2)[111] screw dislocation were each constructed using cylindri-
cal computational cells of about 18000 atoms, containing the dis-
location along the cylinder axis and having periodic boundaries in
the direction of the dislocation line, with fixed boundaries at the
surface of the cylinder, see Fig. 2. To construct the dislocated cell,
all atoms in the cell were displaced according to the anisotropic
elastic displacement field of the dislocation. Then, with the atoms
far from the center of the cylinder fixed, the interior atoms in the
cell were relaxed to their equilibrium positions by a conjugate
gradient method to allow the dislocation core field to develop.
Depending on the specific cases, smaller cells of 2000–5000 atoms
were carved out of the larger relaxed cylinders, especially for the
more computationally intensive dimer searches.

To determine He defect formation energies, a He atom was
placed at a specific position within the given relaxed cell and the
atoms in the cell were relaxed again. The binding energy of the
He defect to the dislocation is the difference between the forma-
tion energy of the interstitial He atom in the dislocation and its
formation energy in a perfect crystal.
b

nergy and finding the lowest curvature mode at the midpoint of two images, and (b)
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the (a) (a/2)h111i½�1 �12� edge dislocation, and (b) the (a/2)h111i screw dislocation.



Fig. 3. Section through center of a 2 nm coherent Cu particle (gray atoms)
embedded in an Fe matrix (black atoms). Note only a few Fe atoms are shown to
illustrate the nature of the particle/matrix interface. The [001] direction is normal
to the page.
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Due to the strains associated with the dislocations, especially
within the core regions, the precise locations of the tetrahedral
or octahedral interstitial sites are not obvious, and the initial place-
ment of an interstitial He atom is somewhat arbitrary. In principle,
the He atom should relax to the expected equilibrium position,
but in practice, during the relaxation process, some He atoms
‘migrated’ to a lower energy position in an adjacent interstitial
location. This effect is responsible for the anomalous data points
on the graph in an earlier publication [9] relating interstitial forma-
tion energies to excess interstitial volume, and the revised version
of this figure is presented here.

Starting from a specific relaxed configuration, dimer calcula-
tions were performed to determine the energies, saddle points,
and final configurations of all the possible transitions from that
configuration. To study He–core interactions dynamically, MD sim-
ulations were performed for up to 8 ps at 100 K for single migrat-
ing He atoms near the edge dislocation core on both the tension
and compression sides of the slip plane. To study the effects of dif-
ferent Fe–Fe potentials on He–dislocation interactions, separate
test cells were constructed for the Ackland and Mendelev Fe–Fe
potentials because their equilibrium lattice parameters for perfect
Fe are slightly different, see Table 1.

2.5. Grain boundaries

The procedure for computing the atomic arrangements of GBs
and the effect of such arrangements on the binding of interstitial
and substitutional He has been described in detail elsewhere
[8,21,22] so only salient details will be presented here. The compu-
tational model consists of a two-part rectangular cell in which a
movable array of atoms is embedded in a semi-rigid array of
atoms. The GB bisects the model and is periodic in the plane of
the GB. Four symmetric tilt GBs were studied in this work, all with
a common h101i tilt axis. The four GBs were R3{112} H = 70.53�,
R11{323} H = 50.48�, R9{114} H = 38.94�, and R3{111}
H = 70.53�.

Ground state (minimum energy) structures for each GB were
determined by computing the c-surface. This was accomplished
by macroscopically translating one grain relative to the other and
relaxing the system using molecular dynamics with an energy
quench. Atoms in the movable array were free to move, but only
rigid-body displacements normal to the GB plane were allowed.
Local minima on the c-surface were then fully relaxed, which in-
cluded both local atomic displacements and 3D rigid-body transla-
tions of each grain. Once the ground state structures for each GB
were determined, the GB energy was carefully computed along
with the variation of excess atomic volume normal to the GB plane.

Binding of He to each GB was investigated by inserting a single
interstitial or substitutional He atom, and then fully relaxing the
simulation block again. A relatively large number of initial posi-
tions for He atoms were studied to determine the dependence of
He binding energy on the distance from the GB plane.

The transition states and mechanisms for migration of intersti-
tial He in two representative GBs. i.e. R3{112} and R11{323},
were studied by the dimer method. Periodic ‘boundary conditions’
were employed parallel to the GB plane, whereas a fixed ‘boundary
condition’ was applied in the direction normal to the GB. The shape
of the computational block was rectangular with dimensions of
�33 � 36 � 32 Å for both GBs. The dimer separation was set at
10�3 Å, and the value of the finite difference step for both rotation
and translation was 10�4 Å. A maximum move distance for the di-
mer was initially set at 0.1 Å, as used previously for self-intersti-
tials in Fe [23], but this value gave small rates of success in
finding saddle points. Decreasing the maximum move distance to
0.01 Å was found to yield higher success rates (�80%). The dimer
search is stopped when the total force for all atoms in the model
is less than 10 �4 eV/Å. For each initial state we generally carried
out 50 dimer searches with initial dimer vectors, which were gen-
erated randomly to have nonzero components only on 10–30
atoms around a He interstitial.

2.6. Particle–matrix interfaces

The effect of particle elastic properties on the binding of He–va-
cancy clusters to the particle–matrix interface was investigated by
embedding coherent, 2 nm diameter, particles in a large 3D peri-
odic computational cell of Fe. A cubic computational cell was used
with a repeat distance of 50 lattice parameters on each side. A
computational cell of these dimensions contained about 250000
atoms. Coherent particles were introduced by switching the chem-
ical identities of 339 atoms from Fe to either Cu or modified Cu at
the center of the computational cell. Fig. 3 shows a section through
the middle of a Cu particle embedded in Fe. Only a few Fe atoms
are plotted to illustrate the nature of the particle–matrix interface.
Note the surface of the particle is not spherical but faceted.

As shown in Table 1, normal Cu particles are elastically stiffer
than Fe, and particles formed from modified Cu are elastically soft-
er than Fe. Since all the particles were intended to be coherent,
they were constrained to adopt the bcc crystal structure of Fe. In
all cases the particles have positive misfits because the lattice
parameters of our bcc Cu and modified Cu are approximately equal
to each other and larger than bcc Fe. Thus, during relaxation the
particle seeks to expand against the surrounding Fe matrix, but
is constrained by it. To make the relaxation process more efficient
we adjusted the cell volume prior to relaxation by applying a vol-
umetric strain to our models that was estimated from DV/
V � (1 + exx + eyy + ezz) � NP(XP �XFe) where DV/V is the volume
strain, exx, eyy, and ezz are principal strains, NP is the number of
atoms in the particle, and XP, XFe are the atomic volumes of a
particle atom (bcc phase) and an Fe atom, respectively. Once the
model was prepared as described above, the various HemVn com-
plexes (m = 0,1,n = 1,2) were inserted at different distances from
the Fe/particle interface to explore the spatial dependence of the
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Table 3
Effect of GB structure and excess volume on binding energies of interstitial and
substitutional He in Fe

Grain
boundary

GB
energy
(J/m2)

Excess
vol./GB
area (Å)

Maximum
interstitial binding
energy (eV)

Maximum
substitutional
binding energy (eV)

R3{112} 0.30 0.066 0.55 0.17
R11{323} 1.05 0.216 1.40 0.42
R9{114} 1.40 0.357 2.29 0.70
R3{111} 1.51 0.408 2.66 0.78
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He–vacancy complex interaction with the particle. A conjugate
gradient relaxation scheme was used to relax our models. The cell
volume was adjusted during relaxation by calculating the Virial
pressure and applying a uniform volumetric strain to zero the
pressure.

3. Results and discussion

3.1. Binding of He to dislocations

The binding energies of substitutional and interstitial He atoms
to edge and screw dislocations were calculated as a function of
the location of the He relative to the center of the dislocation.
The calculated results of binding energies of interstitial He atoms
as a function of distance from the edge and screw dislocations
are discussed in detail elsewhere [9,24]. The binding and migration
energies are summarized in Table 2. The binding energies are very
position dependent, and only maximum binding energies are re-
ported in the table. In general, both substitutional and interstitial
He atoms are more strongly bound to the edge dislocation than
to the screw. For both dislocation types the binding energy drops
off sharply for He atoms at greater than about 0.5 nm from the cen-
ter of the dislocation core.

Using the Ackland potential for Fe–Fe interactions, the most sta-
ble interstitial He configuration is in the octahedral location. How-
ever, near the edge dislocation where its binding energy is
maximum, the He atom assumes a crowdion configuration in the
close-packed [111] direction that is perpendicular to the disloca-
tion line in the direction of the Burgers vector. Fig. 4 is a plot of
the binding energy as a function of the excess interstitial volume
for a He interstitial at a number of locations in and near the edge
dislocation core. There appears to be a direct correlation between
the excess interstitial volume and the binding energy of the He
interstitial, with a distinct threshold for the formation of the crow-
dion configuration. He interstitials near the screw dislocation are
never observed in the crowdion configuration. This is probably be-
cause the excess interstitial volume in the vicinity of the screw dis-
location is not sufficient to promote the formation of the crowdion,
although the different symmetries of the edge and screw displace-
ment fields may also have an effect.

3.2. Binding of He to grain boundaries

Our results for binding energies of interstitial and substitutional
He at four h110i symmetric tilt GBs in Fe have been reported pre-
viously [8]. Table 3 summarizes the results of our calculations. The
GBs we selected to study were intended to span a relatively wide
range of structures with attendant variation in GB energies and ex-
cess volumes. It is evident from the data in Table 3 that there is a
strong correlation between GB energy and excess volume. Similar
correlations have been observed for both fcc and bcc metals in
Table 2
Effect of dislocation character on binding and migration energies for interstitial and
substitutional He in Fe

Configuration Maximum binding
energy (eV)

Migration energy
(eV)

Interstitial He in perfect Fe – 0.08
Interstitial He in edge dislocation

core
2.29 0.4–0.5 Along core

Interstitial He in screw dislocation
core

1.05 0.4–0.5 Along core

Substitutional He in edge
dislocation core

0.50 –

Substitutional He in screw
dislocation core

0.25 –
which symmetric and asymmetric tilt GBs as well as symmetric
and asymmetric twist GBs were investigated [25]. This correlation
was not sensitive to the type of interatomic potential employed
(i.e., Lennard-Jones versus many-body potentials) [25]. Binding
energies of He atoms to GBs are defined here in the same way as
for dislocations, namely, the difference in formation energy of
the interstitial or substitutional He atom in or near the GB minus
the formation energy of the same defect in perfect bulk Fe. In our
simulations we found that He binding energies depend sensitively
on the precise location of the He atom within and normal to the GB
plane, so for simplicity, only maximum binding energies are pre-
sented in Table 3. As noted previously [8] there is a clear depen-
dence of the maximum binding energy for both interstitial and
substitutional He on GB excess volume. The same general trend
of increasing binding energy associated with increasing excess vol-
ume found for dislocations is also observed for GBs. Thus, low-
energy–low-excess volume GBs are less likely to form bubbles
since He atoms are weakly bound to such boundaries and can dif-
fuse away at moderate temperatures. On the other hand, high-
energy–high-excess volume GBs are much more potent traps for
He and consequently are much more likely to nucleate and grow
bubbles. Experimental evidence for this has been reported in the
literature [26]. Thorsen et al. [26] measured the sizes of bubbles
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at 55 GBs in He-implanted Cu specimens. They discovered that
low-energy boundaries contained smaller bubbles than high-en-
ergy boundaries, and that medium energy boundaries tended to
contain medium size bubbles [26]. They attributed the bubble size
distribution on increasing He diffusivity with increasing GB energy
rather than increased binding to GBs with greater excess volume.
Based on limited data presented below on the migration of intersti-
tial He in two GBs with significantly different energies we do not
find evidence for increased He diffusivity with increasing GB en-
ergy, but we need to investigate a wider range of GBs before defin-
itive conclusions can be reached.

3.3. Binding of He to particle–matrix interfaces

Fig. 5 shows the interaction energy between either a single va-
cancy (V1) or a substitutional He atom (He1V1) as a function of
their distance from a 2 nm diameter coherent bcc Cu particle.
The dependence of vacancy and He binding on interface character
was explored by placing mono-vacancies or substitutional He
atoms at different distances from either the (100) or (101) face
of the Cu particle. In this case the elastic properties of the bcc Cu
particle are stiffer than bcc Fe as shown in Table 1. The calculated
binding energies for mono-vacancies and substitutional He at the
interface were nearly the same at �0.58 eV. The distance depen-
dence of the interaction energy for both types of point defects
was also nearly the same, and no significant effect of interface
character was found. To a first approximation the binding energies
are roughly equal to the defect formation energy in bcc Fe minus
the defect formation energy in bcc Cu. From Table 1 the predicted
binding energies for a mono-vacancy and a substitutional He atom
are 0.38 eV and 0.71 eV, respectively. It should be noted that the
defect formation energies given in Table 1 are computed for the
pure metals at zero temperature and pressure, hence, they will
be different from the defect formation energies in the Cu particle
and in Fe near the particle because of the compressive stress states
that exists in these regions.

Fig. 6 presents the defect-particle interaction energy results for
both di-vacancies (V2) and He/di-vacancy complexes (He1V2) in the
vicinity of a 2 nm coherent Cu particle. Both first nearest neighbor
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Fig. 5. The interaction energy between a single vacancy (V1), or a substitutional He
atom (He1V1) and a 2 nm coherent bcc Cu particle in Fe as a function of the distance
from either the (100) or (101) face of the Cu cluster. The particle is elastically
stiffer than Fe.
(1nn) and second nearest neighbor (2nn) di-vacancy configurations
were considered. The dependence of binding energy on interface
character was also examined and found to be not significant. The
binding energies of di-vacancies and He/di-vacancy complexes
were nearly the same at �0.85 eV near the interface. Similar to
the mono-vacancy and substitutional He, the binding energy for
di-vacancies and He/di-vacancy complexes can be predicted from
the difference in their defect formation energies in Fe and Cu. For
1nn V2 and He1V2 defects the binding energies predicted from
the data in Table 1 are 0.84 and 1.07 eV, respectively. Similarly,
for 2nn V2 and He1V2 defects the predicted binding energies are
0.67 and 1.03 eV, respectively. The predicted binding energies are
fairly close to the calculated value, which is somewhat unexpected
given that these defects simultaneously reside in both the Cu par-
ticle and in the Fe matrix.

Figs. 7 and 8 display results analogous to those shown in Figs. 5
and 6 except that the particles were formed from modified Cu with
elastic constants softer than Fe. Note the cohesive energy for the
modified fcc Cu phase is the same as normal fcc Cu, but the cohe-
sive energy of the modified bcc phase is about 0.1 eV greater than
normal bcc Cu. The larger cohesive energy of a single vacancy in
the modified bcc Cu may partially account for the 0.35 eV increase
in the mono-vacancy formation energy. The results clearly show
that vacancies and He–vacancy complexes are more weakly bound
to the modified Cu particles. In addition, mono-vacancy binding
energies (0.28–0.35 eV) were lower than substitutional He binding
energies (0.39–0.49 eV). The defect formation energy data given in
Table 1 suggest this trend. The vacancy formation energy in mod-
ified Cu is only 0.03 eV smaller than Fe, so weaker binding of
mono-vacancies is expected. Similarly, the substitutional He for-
mation energy in modified Cu is 0.13 eV greater than in normal
Cu, so weaker binding would be anticipated. Further, the differ-
ences in defect formation energies suggest that substitutional He
atoms would be bound more strongly than single vacancies to
modified Cu particles as shown in Fig. 7. Di-vacancies and He1V2

complexes were also more weakly bound to the modified Cu
particle, which results from increased defect formation energies
in modified Cu relative to normal Cu, see Table 1. Differences in
defect formation energy predict that di-vacancies should be more



0.0

0.2

0.4

0.6

0.8

1.0

0 10 12

V
1
 (100)

V
1
 (101)

He
1
V

1
 (100)

He
1
V

1
 (101)

B
in

di
ng

 e
ne

rg
y,

 e
V

Distance from Cluster, Å
2 4 6 8

Fig. 7. The interaction energy between a single vacancy (V1), or a substitutional He
atom (He1V1) as a function of distance from a 2 nm modified Cu particle in Fe. The
particle is elastically softer than Fe.
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Fig. 8. The interaction energy between a di-vacancy (V2), or a He/di-vacancy
(He1V2) complex as a function of distance from a 2 nm modified Cu particle in Fe.
Di-vacancy configurations are either first nearest neighbor (1nn) or second nearest
neighbor (2nn). The particle is elastically softer than Fe.
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weakly bound to the nanocluster than He1V2 complexes, but the
results displayed in Fig. 8 indicate the opposite was observed.

3.4. Migration of He within and near the core of a dislocation

Migration energies of He atoms near and within the dislocations
are obtained using the dimer analysis, from which the saddle point
energies and atom configurations of the transition states involved
in migration can be determined.

3.4.1. Interstitial He–edge dislocation
As expected, interstitial He atoms approaching the core region

on the tensile side of the edge dislocation migrate more favorably
toward the dislocation line than away from it. In all dimer trials the
He atom is initially placed in an octahedral interstitial site, but dur-
ing the initial relaxation of the dimer process it may assume a dif-
ferent pre-transition configuration. For the edge dislocation, an
octahedral interstitial He placed about three Burgers vectors from
the dislocation center on the tensile side migrates toward the
center with a migration energy on the order of 0.2 eV, remaining
in octahedral sites. Closer to the dislocation, as excess volume
increases, the relaxed He atom is more likely to occupy tetrahedral
interstitial sites, and very near and within the dislocation core, the
lowest energy interstitial configuration for a He atom on the tensile
side is a [111] crowdion. The region about the dislocation in which
He is most stable as a crowdion has an oval-like cross section
extending about 0.8 nm on either side of the dislocation line and
about 0.8 nm above the slip plane. This is similar to the interaction
region of a self-interstitial Fe atom with an edge dislocation deter-
mined by Kuramoto et al. [27], which is consistent with the shape
of the tensile strain field of the dislocation.

Within the edge dislocation core, a He atom in the crowdion
configuration preferentially migrates along the dislocation line,
which is perpendicular to the crowdion direction, by hopping to
crowdion positions in adjacent rows with a migration energy of
0.4–0.5 eV, depending on the initial position. He migration ener-
gies near and within dislocations are summarized in Table 2. The
activation energy for He jumping out of the crowdion configuration
to an octahedral interstitial site (as a first step of migrating away
from the dislocation) is about 1.5 eV. He atoms placed in the model
on the compression side of the edge dislocation, at locations
greater than a lattice parameter from the center of the dislocation,
remain in octahedral sites upon relaxation and migration. Migra-
tion energies are on the order of 0.25 eV toward the dislocation
and 0.02 eV away from the dislocation, consistent with having
negative binding to the compression side of the dislocation.

3.4.2. Interstitial He–screw dislocation
The binding energy of an interstitial He atom to the (a/2)h111i

screw dislocation in Fe is about 1.0 eV, or about half that of inter-
stitial He to the (a/2)h111i{110} edge dislocation. However, the
circular cross-sectional area about the screw dislocation within
which interstitial He is significantly attracted toward the core is
about the same as the cross-sectional area of the attractive region
about the edge dislocation. No He atoms were observed to relax
into the crowdion configuration anywhere in or near the screw
dislocation in Fe.

Despite the factor-of-two differences in formation energies of
He interstitials near the edge and screw dislocations, the migration
energy ranges for He undergoing ‘pipe diffusion’ along the disloca-
tion cores of both types of dislocation are about the same, 0.4–
0.5 eV. However, the excess interstitial volume in the core region
is significantly greater in the edge dislocation than in the screw,
and the migration mechanisms of He in the two dislocation cores
are quite different, with interstitial He atoms migrating in the
crowdion configuration along the edge and as octahedral intersti-
tials along the screw.

3.5. Migration of He in grain boundaries

Initially, the lowest energy configuration of a single He intersti-
tial within each GB was determined by annealing the computa-
tional cell at 1000 K for about 10 ps and then slowly cooling
down to 0 K. These stable configurations were used as the initial
states for investigating migration of He interstitials using the di-
mer method. The most stable configuration of a He interstitial in
the R3 GB is located mid-way between two Fe atoms along the
[110] direction, but slightly displaced along the ½1 �11� direction,
as shown in Fig. 9. However, in the R11 GB the most stable config-



Fig. 9. Atomic plots showing two different paths of interstitial He migration in the R3{112} GB. Path 1 is along the ½1 �11� direction, and path 2 is along the [110] direction.
Bright red spheres indicate He atom positions, while dark red and green spheres represent Fe atoms in alternating {110} planes perpendicular to the h110i tilt axis. Note the
model has been rotated slightly about the ½�112� direction. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of this
article.)
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uration of a He interstitial is located at the middle of two triangles,
each formed by three Fe atoms on the same plane normal to the
[110] direction (octahedral position), and its structure is detailed
in Fig. 10. Dimer searches generally identify a number of transition
states, but the most likely migration paths are those with the low-
est energy barriers. In the R3 GB, two possible migration paths for
interstitial He were discovered, as shown in Fig. 9, which are likely
the most common diffusion mechanisms in this GB. In Fig. 9, the
He interstitial crosses the GB plane (dotted line) to an atomic
row in the upper grain. Its final position is equivalent to its initial
configuration, but on a different atomic plane (path 1). The arrow
in Fig. 9 indicates the migration path of the He atom, and the cor-
responding energy barrier is about 0.47 eV, which is much higher
than interstitial He in bulk Fe. From this position, the He atom is
able to cross the GB again and return to its starting point in the
lower grain. The saddle point energy for this second move is essen-
tially the same as for the first jump, 0.46 eV. If its final position is
similar to the original position in the next atomic row, then this
will lead to the migration of the He atom along the ½1 �11� direction.
A sequence of moves of this type is given in Fig. 9. However, if the
final position of the He atom is in the same atomic row as that of its
original position, this will lead to the migration of the He atom
along the [110] direction, as shown in Fig. 9 (path 2). Because
these paths have the same energy barrier, the He interstitial can
Fig. 10. An atomic plot illustrating the 1D zigzag migration path of interstitial He atom
green spheres represent Fe atoms in alternating {110} planes perpendicular to the h110
interpretation of the references in colour in this figure legend, the reader is referred to
migrate two-dimensionally on the GB plane at low temperatures.
The next lowest energy barrier obtained from dimer searches is
about 0.68 eV, which is associated with the migration of the He
atom away from the GB. This leads to dissociation of the He atom
from the GB, and results in 3 D diffusion at higher temperatures,
which is consistent with the small binding energy to the R3 GB.
Previously, MD simulations were employed to study He diffusion
in the R3 GB [10], and it was found that interstitial He atoms mi-
grate two-dimensionally at low temperatures and three-dimen-
sionally at higher temperatures. The present results obtained by
the dimer searches are in good agreement with the long-time
MD simulations.

Unlike the migration of interstitial He within the R3 GB, only
one migration path has been observed with 50 dimer searches
for the R11 GB, which is shown in Fig. 10. The most stable position
of the He interstitial is an octahedral site below or above the GB
plane, as indicated by a dotted line in Fig. 10. The He atom can mi-
grate from an octahedral position below the GB plane to an equiv-
alent position above the GB plane with an energy barrier of about
0.47 eV, but further movement of the He atom along the same
direction is not observed. Due to strong binding to this GB, the
He atom prefers to change its direction, and migrates back to the
octahedral position below the GB plane. The arrows in Fig. 10 indi-
cate the lowest energy path of the He atom within the R11 GB, and
s in the R11{323} GB. Bright red spheres show He atom positions, while gold and
i tilt axis. Note the [110] direction is perpendicular to the plane of the paper. (For

the web version of this article.)
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this path leads to the He atom migrating one-dimensionally along
the interface, but with zigzag behavior. The migration energy in the
R11 GB is very similar to that determined for the R3 GB, but the
trajectories are different, resulting in different migration behav-
iors. Also, the diffusion of a He interstitial in the R11 GB has been
investigated by long-time MD simulation [10], and the results
show that the He interstitial migrates one-dimensionally along
the ½1 �13� direction, even at high-temperatures. The present results
are in general agreement with those observed in the MD simula-
tions, which suggests that the migration mechanisms of a He inter-
stitial depend on GB structure and binding energy. These results
demonstrate that different migration mechanisms of a He intersti-
tial, especially affecting the dimensionality of migration, may have
a significant effect on He bubble nucleation in different GBs.

4. Summary and conclusions

Our results clearly show that interstitial He is strongly bound to
both dislocations and GBs with maximum binding energies ranging
from 0.55 to 2.66 eV. Substitutional He is also bound to disloca-
tions and GBs, but much more weakly than for interstitial He, with
maximum binding energies between 0.17 and 0.78 eV. All point
defect complexes considered in this study are bound to positive
misfit, 2 nm particles embedded in an Fe matrix with binding ener-
gies ranging from 0.50 to 0.58 eV for single vacancies and substitu-
tional He atoms. Di-vacancies and He/di-vacancy complexes are
more strongly bound with binding energies of �0.85 eV. Point de-
fects are not as strongly bound to particles elastically softer than Fe
when compared to particles elastically stiffer than Fe. To first or-
der, differences in point defect formation energies are likely
responsible for the binding energies observed.

Binding energies strongly correlate with defect excess volume.
Consequently edge dislocations are stronger He traps than screw
dislocations because of the much larger excess volume available
in an edge dislocation compared with a screw dislocation. Helium
trapping at GBs is somewhat greater to somewhat less than for
dislocations depending on the type of GB. Coherent, positive misfit,
nanoparticles also efficiently trap He, but semi-coherent particles
may be more efficient traps because of the excess volume associ-
ated with the array of misfit dislocations needed to accommodate
the lattice parameter mismatch between the particle and matrix.

Interstitial He migrates along the h112i edge dislocation line
within a ‘ribbon’ about 2 nm wide with a minimum cross section
of about 2 nm2. Migration of He interstitials along the h111i screw
dislocation occurs within a cylinder of about 2 nm in diameter.
Pipe diffusion of interstitial He is approximately the same for pure
edge and pure screw dislocations with migration energies of about
0.4–0.5 eV in both cases. For the two GBs we have studied the
migration energies of interstitial He in GBs determined by both
dimer and long-time MD calculations were similar to those for dis-
locations at about �0.4–0.5 eV. Dimer calculations also show that
the dimensionality of interstitial He migration depends on GB
structure even though migration energy does not. Such differences
in migration dimensionality may have significant implications for
He bubble nucleation and growth.
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